Deep Learning: Aprendizaje artificial aplicado a Social Media.

Deep Learning es una  técnica de aprendizaje artificial que ya ha dotado a los ordenadores de una capacidad para reconocer la voz, clasificar imágenes, videos y ha realizado impresionantes avances en procesamiento de lenguaje natural.

Deep Learning implica la aplicación repetida de cálculos a los datos, que pueden ser imágenes o sonido, para reconocer atributos clave y similitudes. Aunque existen varias maneras de implementar Deep Learning, una de las más comunes es utilizar redes de neuronas. Una red de neuronas es una herramienta matemática que modela, de forma muy simplificada, el funcionamiento de las neuronas en el cerebro. Otra forma de verlas, es como un procesador de información, que recibe información entrante, codificada como números, hace un poco de magia, y produce como resultado información saliente, codificada como otros números.

Los principios matemáticos que forman la base del aprendizaje profundo son relativamente sencillos, pero cuando se combinan con enormes cantidades de datos de aprendizaje y sistemas informáticos que ejecutan múltiples operaciones en paralelo, la técnica ha dado paso a grandes avances en los últimos años, sobre todo en los campos de reconocimiento de voz e imágenes.

Por ejemplo, Google utiliza aprendizaje profundo para el reconocimiento de voz en móviles Android, mientras que Facebook utiliza la tecnología para identificar amigos en las fotos de sus usuarios.   Andrew Ng, profesor adjunto de la Universidad de Stanford (USA), cocreador de Coursera (mis agradecimientos) y  director de Tecnología de la empresa china Baidu, Andrew Ng, dijo en la conferencia que el aprendizaje profundo ya ha demostrado su utilidad. «Una de las cosas que Baidu hizo muy bien desde el principio fue crear una plataforma interna de aprendizaje profundo», dijo Ng. «Un ingeniero de nuestro grupo de sistemas decidió utilizarlo para identificar con un día de antelación cuándo va a fallar el disco duro. Utilizamos aprendizaje profundo para detectar intrusiones. Ahora mucha gente está aprendiendo acerca del aprendizaje profundo y lo intentan aplicar a muchos problemas distintos».

Para campañas de social media, deep learning puede reconocer la identificación de usuarios así como sus gustos y preferencias, extraídas de imágenes y/o videos.  Por ejemplo de una foto de un grupo de amigos en una fiesta, se puede identificar a cada uno de ellos, reconociéndolos por sus similitudes con fotos de perfiles en redes sociales. Incluso se puede extraer características de productos asociados a la imagen, como por ejemplo bebidas, marcas de ropa, sitios de interés, para con esa información realizar campanas personalizadas de contenido.

Les dejo el video de Andrew Ng y los avances en Deep Learning.  El lo cataloga como el estado del arte en aprendizaje no supervizado .

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *