Deep Learning es una  técnica de aprendizaje artificial que ya ha dotado a los ordenadores de una capacidad para reconocer la voz, clasificar imágenes, videos y ha realizado impresionantes avances en procesamiento de lenguaje natural.

Deep Learning implica la aplicación repetida de cálculos a los datos, que pueden ser imágenes o sonido, para reconocer atributos clave y similitudes. Aunque existen varias maneras de implementar Deep Learning, una de las más comunes es utilizar redes de neuronas. Una red de neuronas es una herramienta matemática que modela, de forma muy simplificada, el funcionamiento de las neuronas en el cerebro. Otra forma de verlas, es como un procesador de información, que recibe información entrante, codificada como números, hace un poco de magia, y produce como resultado información saliente, codificada como otros números.

Los principios matemáticos que forman la base del aprendizaje profundo son relativamente sencillos, pero cuando se combinan con enormes cantidades de datos de aprendizaje y sistemas informáticos que ejecutan múltiples operaciones en paralelo, la técnica ha dado paso a grandes avances en los últimos años, sobre todo en los campos de reconocimiento de voz e imágenes.

Por ejemplo, Google utiliza aprendizaje profundo para el reconocimiento de voz en móviles Android, mientras que Facebook utiliza la tecnología para identificar amigos en las fotos de sus usuarios.   Andrew Ng, profesor adjunto de la Universidad de Stanford (USA), cocreador de Coursera (mis agradecimientos) y  director de Tecnología de la empresa china Baidu, Andrew Ng, dijo en la conferencia que el aprendizaje profundo ya ha demostrado su utilidad. «Una de las cosas que Baidu hizo muy bien desde el principio fue crear una plataforma interna de aprendizaje profundo», dijo Ng. «Un ingeniero de nuestro grupo de sistemas decidió utilizarlo para identificar con un día de antelación cuándo va a fallar el disco duro. Utilizamos aprendizaje profundo para detectar intrusiones. Ahora mucha gente está aprendiendo acerca del aprendizaje profundo y lo intentan aplicar a muchos problemas distintos».

Para campañas de social media, deep learning puede reconocer la identificación de usuarios así como sus gustos y preferencias, extraídas de imágenes y/o videos.  Por ejemplo de una foto de un grupo de amigos en una fiesta, se puede identificar a cada uno de ellos, reconociéndolos por sus similitudes con fotos de perfiles en redes sociales. Incluso se puede extraer características de productos asociados a la imagen, como por ejemplo bebidas, marcas de ropa, sitios de interés, para con esa información realizar campanas personalizadas de contenido.

Les dejo el video de Andrew Ng y los avances en Deep Learning.  El lo cataloga como el estado del arte en aprendizaje no supervizado .

Course Signals (CS) es un sistema de analítica del aprendizaje,  que permite el éxito del estudiante en la facultad para proporcionar retroalimentación significativa al estudiante basado en modelos predictivos. La premisa detrás de CS es bastante simple: Utiliza la gran cantidad de datos que se encuentran en una institución educativa, incluyendo los datos recogidos por las herramientas de instrucción, para determinar en tiempo real que los estudiantes podrían estar en riesgo, parcialmente indicado por su esfuerzo dentro de un curso.

Signals tiene cuatro componentes

  • El rendimiento, medido por el porcentaje de cantidad de puntos en curso hasta la fecha
  • El esfuerzo, tal como se define por la interacción BlackBoard LMS de Purdue, en comparación con los estudiantes compañeros;
  • El historial académico previo, incluyendo la preparación académica, GPA de escuela secundaria, y resultados de las pruebas estandarizadas (Extraído con tecnicas de Datamining y Bidgata)
  • Las características del estudiante, tales como la residencia, edad o créditos intentados.

El ayudar a un estudiante a integrarse académicamente a la institución es la clave de Signals, que  ayuda a promover la integración de varias maneras.

  • Permite a los miembros de la facultad enviar correos electrónicos personalizados a los estudiantes que contienen información acerca de su rendimiento actual en un curso dado.
  • Los miembros de la facultad, pueden animar a los estudiantes a visitar usar varios recursos de ayuda o realizar actividades que contribuyen a que el estudiante se integre plenamente con la institución.
  • Emplea la analítica del alumno para permitir la integración de datos en tiempo real del rendimiento de los estudiantes, la interacción con el LMS, la información demográfica y el historial académico.

Los resultados del algoritmo SSA, se muestra una señal en rojo, amarillo o verde en la página principal del curso de un estudiante. Una luz roja indica un alta probabilidad de no tener éxito; luz amarilla indica que un potencial problema esta sucediendo y una señal verde demuestra un alta probabilidad de tener éxito en el curso. El algoritmo genera un indicador riesgo-curso específico para cada estudiante basado en el rendimiento, el comportamiento basado en pares, y datos de preparación educativa. Los instructores pueden intervenir a tiempo y brindar a los estudiantes una oportunidad realista de adaptar su comportamiento.

dash

Resultados

El otoño del 2007, 2008 y 2009, se compararon las cohortes de principiantes con una lista de todos los participantes de CS en la Universidad Purdue,  para determinar que estudiantes usan CS o no en sus cursos. Cada semestre, los estudiantes en cada cohorte, presentan retención o una conducta de salida.  La tasa de retención se calcula sumando los estudiantes que todavía están inscritos y que se han graduado y dividiendo esa suma por el número total de estudiantes por primera vez a tiempo completo en el cohorte original.

Los alumnos que comenzaron en Purdue 2007 (Tabla 1), 2008 (Tabla 2), y 2009 (Tabla 3) y participado en al menos un curso con CS,  son retenidos en tasas significativamente más altas que sus compañeros que no tenían clases con CS durante el mismo semestre. Además, los estudiantes que tienen dos o más cursos con CS se mantienen constantemente a tasas más altas que las que tenían sólo uno o ningún curso con CS.

tabla2

Futuros retos para Course Signals

  • La adquisición de datos de diversas fuentes (Social Networks Analysis, Video, etc.)
  • Gestión dinámica de data
  • Privacidad de los estudiantes.
  • Falta actual de las mejores prácticas. (Intervenciones)
  • El rol de TI en análisis académicos.
  • Analítica como herramienta de retención y el potencial de ahorro de dinero.
  • Las ventajas de un sistema propio en comparación con el software comercial.

Fuente: Course signals at Purdue: using learning analytics to increase student success – KE Arnold